Updating your PowerBuilder’
Application for Today’s World

By Donald D. Clayton, President, Intertech Consulting, Inc.

www.sybase.com

TABLE OF CONTENTS

1 Introduction

1 Background

ATypical PowerBuilder Upgrade Scenario

Techniques Explored
Moving Away from Windows Classic Style Controls
Incorporating Contemporary Menus and Toolbars
Using TreeView DataWindows to Create a Hierarchical View of Data
Upgrading to the New, Improved RTF Controls
Hierarchical Task Lists for Menus
Other Modern Ul Techniques

11 Improving on the Use of MDI

11 Beyond MDI —The Windows Presentation Foundation

Next Steps for PowerBuilder Developers

Conclusion

INTRODUCTION
User Interface (Ul) standards have evolved over the years and custom-developed applications haven’t kept pace.

Many applications developed in the 1990’s now have a dated look and feel. With some minimal effort, applications

can be given a fresh look by making a few key User Interface (Ul) changes. At stake is no less than your user’s

satisfaction with your software.

BACKGROUND

Most of us don’t remember much about Windows® Version 1 or 2. They were fairly basic windowing systems,
and the primary issue was the lack of a multi-threaded, multi-tasking operating system to support a multi-tasking
windowing desktop. To compensate for this, Windows developed a queuing mechanism that simulated multi-tasking

in a single-tasking OS.

Windows really took off with Windows 3.0 in the 1990 timeframe. Still bootstrapped from MS-DOS, the primary
user interface mechanism was a series of child windows with icons nested inside them (remember Program Manager,
the forerunner to Explorer?) Clicking on an icon in a child window would either open a nested child window or launch
a program. Programs were differentiated from Program Groups in this manner, and hierarchical menu systems
developed in this way. One of the primary uses of Child Windows in PowerBuilder® at that time was to mimic

Program Manager.

In that era, the most popular word processing program was WordPerfect™ and the most popular spreadsheet
was Lotus 123™. Microsoft had a rather cryptic and difficult to understand word processing program called Word™
which was initially character-based. It wasn’t until Word for Windows came out that the metaphors used in the prior
versions of Word, such as formatting objects, styles, inherited formatting objects, and so forth became intuitively
obvious, and Microsoft Word took off.

1 Updating your PowerBuilder Application for Today’s World

Following on the heels of its success with Word, Microsoft set out to write a program that would exceed the
productivity bar set by Lotus 123 and came out with Microsoft Excel™. One of the first design ideas for Excel was the

ability to edit multiple spreadsheets at one time, and hence the Multiple Document Interface (MDI) was created.

Other spreadsheets would also take aim at Lotus 123, such as Borland’s Quattro™, which introduced three
dimensional spreadsheets, now called pivot tables in Excel. Microsoft subsequently acquired a company that was
competitive with Harvard Graphics™ called PowerPoint. This DOS-based program was reworked for Windows and the

Microsoft Office productivity suite was born.

Microsoft has rewritten the rule book for Ul standards several times. Following on the commercial success of
Windows 3.x came Windows g5, 98, the soon forgotten ME, Windows 2000, Windows XP, Windows Vista, and Windows
7.0. Most large organizations have used a combination of Windows 2000 and Windows XP since 2000, many have
shunned Vista, and most are eagerly awaiting the adoption of Windows 7.0. So if we developers want to excite and
capture the imagination of PC users today we need to be able to offer a user interface experience matched to the

underlying operating system. And, today, the term Ul is not even in fashion. Now, it’s all about the User Experience (UX.)

A TYPICAL POWERBUILDER UPGRADE SCENARIO

In this context, PowerBuilder applications that underwent initial design and development efforts in the mid to late
1990s were developed to look good in the Windows 95 and 98 operating systems, and many were designed to look
like extensions to Microsoft Office by using the MDI interface. These efforts also look acceptably fresh under Windows

2000, but start to wear thin starting with Windows XP.

One issue with older PowerBuilder applications compiled under PowerBuilder 8.0 and previous versions is that all
windows are rendered under XP differently, and as such, PowerBuilder 8.0 and prior applications clip the bottom and
right margins of their windows. This is because of the way Windows measures the size of each window changed in
XP. Of course, PowerBuilder 8.0 was optimized for Windows 2000 and changes Microsoft made to the Windows API

forced this to happen.

Organizations have also moved to newer versions of Microsoft Office and want good interoperability with Office
and the ability to leverage the user’s experience with Office and Windows. Microsoft Office has undergone numerous
revisions, and the current version is Office 2007, also known as Office 12. Only Excel is technically still MDI-based, and

the rest of the Office products are no longer MDI.

Compounding the shift away from MDI is the trend towards browser-based applications and Windows Presentation

Foundation (WPF), which is featured in PowerBuilder 12 .NET. It appears that the MDI interface is on borrowed time.

This article will discuss a variety of ways, some simple, some not so simple, to update your applications’ user
interface and experience standards. Along the way, we will explore Microsoft’s stated UX direction and what is

achievable through the intelligent use of PowerBuilder.

TECHNIQUES EXPLORED

Techniques explored in this whitepaper include:

+ Moving Away from Windows Classic Style Controls

+ Incorporating Contemporary Menus and Toolbars

+ Using Treeview Datawindows to Create a Hierarchical View of Data
« Hierarchical Task Lists for Menus

+ Upgrading to the New, Improved RTF Controls

+ Improving on the Use of MDI

+ Beyond MDI - The Windows Presentation Foundation

So let’s get started.

Updating your PowerBuilder Application for Today’s World 2

Moving Away from Windows Classic Style Controls

Microsoft introduced a new visual style for controls with the Windows XP operating system. In Windows XP ‘s
control panel, the user can choose to use a Windows XP theme that sets properties such as background, sounds, and
icons, as well as the default style of controls. You can also choose to use the Windows XP style for controls even if you

are not using a Windows XP theme.

The first thing most PowerBuilder developers should do when moving to PowerBuilder 11.5 or higher is to move

away from Windows Classic Style controls by doing the following on XP and later development environments:

1. Select Tools, System Options from PowerBuilder’s main menu, and uncheck “Use Windows Classic Style on XP”".

(Figure 1)
System Options @
\ Profiling Firewall Setting Java

General I ‘Workspaces | System Font Printer Font

Initialization Path:

[C]Prompt on Exit

[] Just In Time Debugging

Automatically Clear Output Window
Horizontal Dock Windows Dominate

D Free Database Driver Libraries on Disconnect

[[]Enable PEDebug Tracing
[Prompt Before Overwriting PBDebug Output File
PBDebug Output Path:

| [--]

[[JUse Windows Classic Style on %P

[pisable database connection when compiling and building

On click Run, if .\NET application projects are out of date:

Ask me v

I OK][Cancel] Apply

Figure 1: Enabling XP style controls in PowerBuilder

2. Restart PowerBuilder

3. For relevant PowerBuilder Win32-based Project Objects, open each project object and uncheck the “Windows

Classic Style” checkbox. (Figure 2)

Updating your PowerBuilder Application for Today’s World

£ p_examples_exe * (PB Examples) (C

General ‘Libran'es\ Yersion ‘Secur'lty; Run

Executable file name: ‘ Ider 11.5\Code Examples\Example Appiexamples.exe |[£]

Resource file name: ‘ |E]
Project build options

[Clerompt for overwrite Rebuild: O Incremental

®Eul

Code generation options
Orcode
(® Machine code
[JTrace information

D Error context information

Optimization: |Speed v

Enable DEBUG symbol

Figure 2: Deselecting the Windows Classic Style option in PowerBuilder Win32 Project Objects

The net effect is that all controls will have an XP look and feel if the operating system supports it. Figure 3 shows

a PowerBuilder Example application window in Classic Style mode, and Figure 4 shows a PowerBuilder Example
application window in XP Style mode.

*® Resizing Controls on a Window

o = 2| Pictue
Group Box ﬁ
Command Butt
omi utton -~ Yes
LR Edit Mask
Single Line Edit I~ Checkbox .00
Multiline E dit List Bax Sen Cortiol
slfj sdifhjsdf Line 1
Isfkhis flskhi; fine 2 50 3
slfhksf lskfh line 3
slfhsd flhsd flsdh line 4
line 5 Graph
j Sales
Data Window (Freeform) D ataWindow [T abular)
T A| Customerd = Jan
S"eel' 3 ustomer - Feb
City: | m Mar
o Apr
State: [- ar[o May
Phone: |[] - v
< | >
J Resize the Window

Figure 3: A PowerBuilder Example application window in Classic Style mode

Updating your PowerBuilder Application for Today’s World

*® Resizing Controls on a Window

a8 L] 2 Picture
et
G B ;
Command Button rcc;;;e:x %
S4He EdtMask
(Single Line Edit [ICheckbox w |
Multiline E dit List Box Sh Conirod
sl sdifhjsdf Line 1 50 -
Isfkhis flskhf line 2 {]
slfhksf Iskfh line 3
slfhsd flhsd flsdh line 4
line: 5
v
Data Window (Freeform) Data Wwindow (T abular)
Street: ~ Customer ID
City: ,_
State: | v ZIP:
Phone: i[__l v
<

Graph

m Jan
m Feb
m Mar
o Apr
o May

Sales
37.50% 3957%
1.56%
1947 190X

Resize the Window

Figure 4: A PowerBuilder Example application window in XP Style mode

Incorporating Contemporary Menus and Toolbars

The next easiest thing to do to update a PowerBuilder application is to incorporate “contemporary” menus, toolbars,
tooltips, and other Ul mnemonics. These new menu styles were introduced in PowerBuilder 10.5. Menus imported or
migrated from earlier versions of PowerBuilder use the Traditional menu style by default. Menus with a Contemporary
style have a three-dimensional menu appearance similar to those in Microsoft Office 2003 and Visual Studio 2005,

and can include bitmap and menu title bands.

In existing menu objects there is an enumerated property that needs to be set to contemporarymenu! Other menu
object and subordinate menu object properties then give the developer additional control over the look and feel of the

menu, including animation and more modern looking toolbars. As an example, Figure 5 shows a traditional style menu

and Figure 6 shows a contemporary style menu.

® PowerBuilder 11.5 Code Examples

[ZCH Run!

Exit

Help

Expand Al
Collapse all

Change Database Connection...

?:. Inheritance

=3 Mail Enabling

= MDI

=| Menu Techniques
8% Miscellaneous
€ Obiect Communication
4a OLE

[Recursion

G saL

& User Objects

1 Window Controls

Current Example

Description

Desc.liptmnfTechniques Related Objects

Techniques

Figure 5:

ATraditional Style Menu

Updating your PowerBuilder Application for Today’s World

*® PowerBuilder 11.5 Code Examples E]@@

File | Run! Help
Current Example
X

Description/Techniques | Related Objects
Expand All

Description
Collapse all

g2 Change Database Connection...

“-. Exit

% Functions

lalla Graphs

[%. Inheritance

53 Mai Enabling

= MDI

g,_:'—, Menu Techniques
& Miscellaneous
© Object Communication
&a OLE

b Recursion

h saL

& User Objects

1 window Controls

Techniques

L s I = I A = 3 S

Figure 6: A Contemporary Style Menu

Because there are typically only a relatively small number of menus for a given PowerBuilder application, this is
a quick and easy modification that makes a big difference to the user’s experience. If you need additional modern-

looking icons, just browse the web for examples countless icons suitable for contemporary menus.

Using TreeView DataWindows to Create a Hierarchical View of Data

Unlike the previous categories of UX enhancements, using TreeView DataWindows to create a hierarchical view of
data requires a few new coding techniques and the reworking of existing windows. The TreeView presentation style
provides an easy way to create DataWindow® objects that display hierarchical data, with rows are divided into groups

that can be expanded and collapsed.

This new DataWindow presentation style was introduced in PowerBuilder 11. Using TreeView DataWindows has a
significant advantage over using a TreeView control because it is easier to populate dynamically and easier to capture

and process related events at runtime.

Creating and using a TreeView DataWindow is similar to creating and using a Group DataWindow, except with the
TreeView DataWindow, the user can click the state icon to expand and collapse nodes. The other popular aspect of
TreeView DataWindows is that they can have subtotals and group breaks like the Group DataWindow, making for a
very powerful data drill-down presentation.

Updating your PowerBuilder Application for Today’s World 6

Employee First Name Last Name Stieet City State Zip Code
1D

Header |
departme departmert_dept_name
1: TreeView level di dept_iid, d dept_name |
emplopee emplopee_emp_frnz employee_emp_lname employee_street employes_city emplope employes_zip_c em
Detail (leaf node) |
1: Trailer TreeVYiew level department_dept_id, department name |
Summary {
Footer |

v
< >
« \Design - d_treeview_example {Preview - d_treeview_example j ML - (untitled) yColumn Speciication - d_treeview_example yData - d_treeview_exampleAContral Lis_* |

Figure 7: The TreeView DataWindow in design mode

B d_treeview_example (PB Examples) (c:\documents and settings\all users\documents\sybase\powerbuilder 11.5\code examples\exan|

Emplllgyee First Name Last Name Street City State Zip Code P

] 100 R&D

® 200 Sales

] 300 Finance

@ 400 Marketing

= 500 Shipping
1615 Sheila Romero 1 Dakview Terace Bedford MA 01730- (6171
1570 Anthony Rebeiro 39 Moody Stieet ‘Waltham MA 02154 617
103 Joseph Barker 58West Drive Bedford MA m730- (617)€
921 Charles Crowley 421 Beacon Stieet Belmont Ma 02178 [B17)€
868 Felicia Kuo 7902k Street Cambridge Ma 02140 61715
750 Jane Braun 45Wood Street Cambridge Ma 02140 [B17)€
703 Jose Martinez 123 W ashington Strest Westwood Ma 02090- (B17)E
1658 Michael Lynch 76 Brookside Road ‘Waltham MA 02154 (B17) £
19 Jeannette Bertrand 209 Concord Street Acton MA m720- (508) £

! < >
+ [\Design - d_treeview_example jPreview - d_treeview_example XML - (untitled) \Column Speciication - d_treeview_example yData - d_treeview_example yControl Lis_* |

Figure 8: The TreeView DataWindow in preview mode

Upgrading to the New, Improved RTF Controls

PowerBuilder’s aging RTF control was replaced in PowerBuilder 10.5 with a much more powerful control. This new
control supports the current RTF specifications in the RichTextEdit control, the RichText DataWindow, and the new

RTF column style. The new RTF control brings a modern look and includes some new features, including the ability

to name and use formatting styles. Most of the properties and functions of rich text objects in previous versions of

PowerBuilder continue to be supported by the new rich text editor.

Of no small importance is the added ability to save the contents of the RTF control in more modern formats.
FileTypeDoc! saves the file in Microsoft Word format, FileTypeHTML! saves the file in HTML format, while FileTypePDF!
saves the file in PDF format. In PowerBuilder 11.5 the RTF column style in the DataWindow allows for RTF to be easily

stored and retrieved in a DataWindow’s column, which renders as a rich text control once retrieved. Figure 9 shows a

sample of the RTF DataWindow column style.

Updating your PowerBuilder Application for Today’s World

M DataWindow RichText EditStyle

Show Toolar | On Edit v [show Focus Rectangle Textcoor ..] rrr——
IRy [(paeoaa
Text Alignment |Left 4 [“show Vertical Scrollbar
2 e

Subject About PB11.5 DW RichText Edit

bescreten RichText Edit Style for DataWindow Columns

In PowerBuil ta in a rich text format, and to use different
fonts and

\an columns with plain

columns with the

Values are

Modified Time 07/28/2008 12:00 AM

Figure 9: A Sample of the RTF DataWindow Column Style

Hierarchical Task Lists for Menus

Hierarchical task lists for menus can be created in a number of ways. The first way would be to use a TreeView
DataWindow as described above, with hyperlinks that open other windows instead of a large MDI-style navigation
menu. The advantage of such a list is that the developer could populate the DataWindow from a database based

upon the user’s security rights.

Another way would be to use a more modern control, such as Brad Wery’s XPListBar control. Figure
10 shows an example from Brad Wery’s PBGUIControls framework. Brad created his framework and the

www.PowerToTheBuilder.com website to showcase PowerBuilder’s capabilities in the area of GUI design

and development.

E=E

* PowerDock Sample

PListBar

& General

g || P OWES e BUllAdEr com

5 Hide Image in Header
T Display Text Shadow
&5 tiide Text Shadow
4@ Display Close Button
@ tide Close Button

@ ensble Calendar
W Disable Calendar

Style
X %
4 vista Embossed
M} Vista Original
B vista Glass
Custom

5. XPListBar
Output 2] Errors
Ready i |

Figure 10: A Hierarchical Task List Developed the XPListBar Control

The advantage of adopting this approach to application navigation is that it would begin the process of moving
away from using menus to open sheets in an MDI frame, thus laying valuable groundwork to moving either to a

PowerBuilder Web Forms environment or a PowerBuilder 12 .NET WPF environment.

Updating your PowerBuilder Application for Today's World

Other Modern Ul Techniques

There are myriad other techniques for creating or modifying applications. These include the more modern controls
that now ship with PowerBuilder, as well as some advanced frameworks. Many of these techniques result in an
application that looks more “webby” and thus enhances the application’s potential to be moved to the web using
.NET Web Forms or WPF.

One of the easiest techniques is to use underlined hyperlinks controls in DataWindows and Window classes for
navigation and data drill down. Hyperlinks in windows typically open either other windows or web pages and can be
coded to open windows in a Win32/Win Form environment or browser windows or pages contextually. This typically

involves little or no user training as hyperlinks have become ubiquitous with Internet navigation.

Many PowerBuilder applications were developed with developer-created progress bars to indicate the progress of
long running processes. These can easily be replaced with the newer PowerBuilder progress bar controls, as illustrated
in Figure 11. Track Bars were also frequently user-developed and can also be replaced with the new PowerBuilder-

equivalent controls.

*® Progress Bar Controls Q@@

Harizontal Progress Bar

(FEsssssssssRRRR RN NRRRRRRRE)

Options
Step Increment: 10 4 '
Start Position: 50 s
Min Position: 10 -,
Vertical May Position: 100 e
Progress
Bar [C]Smooth Seralling

Start][Stop ” Exit

(OO

Figure 11: The Progress Bar Control Example from the PowerBuilder Examples Application

Moving beyond replacement of individual controls, entire frameworks have evolved in the PowerBuilder shareware
market that have a much more modern look and feel, as well as employing more modern coding techniques

frequently found in Java or .NET applications.

The Kodigo project (www.Kodigopower.com) is one example of a modern development framework for PowerBuilder.
The Kodigo project is an open source PowerBuilder framework that is evolving into a developer suite for C/S and N-Tier

development, complete with tools for unit testing, code generation and documentation.

The Kodigo project framework includes abstract classes for rapid application construction, application services,
control containers to abstract Win32 and .NET Win Form development, DataWindow control classes, theme and layout
manager support, resizable panels and tab containers, and low level classes to hook to the OS. Figure 12 shows a

sample Kodigo project-developed window.

Updating your PowerBuilder Application for Today’s World

% Kodigo Samples E”E”Z‘

Eile Help
@eack -&- 'y g -~ i Theme [Office Blue I
Folders 7 JFolders” [T=]Tab Sheets | [T5]Split Container | [7=] Toolbar(Datawindow) |
3% Kodigo Examples -~ ry
= L) Layout | Employee D Manager ID First Name Last Name Departme:
[T Anchor 1751 1576 Alex Ahmed
=) Docking
% g“‘t:"'"p:e; 591 1576 Irene Barletta
RS Lock sampe 191 703 Jeannette Bertrand
[T Dock Sample 3 5
@[controls 1336 1293 Janet Bigelow
) Listview 1062 1576 Barbara Blaikie
3] Treeview = 750 703 Jane Braun
[=] spltt Container 160 501 Robert Breault
[T Gradient Text o
[T5] Tab Sheets < i | >
T Toolips « This is one| [i1 And then another| [And another |
[T Toolbar (Datawindow) ———
[T5] statusbar (WING2) .
[T Collapse Panel 24 Bottom Tabs add Tabs
=} Datawindow R OExcel
v)
5] Datawindow Listview Bt B Dynamic Tab
=] Datawindow Form = Show Border
=] Datawindow Maker O 5 2005 (not quite) iz Close Tab
= [others S sected
5 magelit V]Bold Selected Text
7] Dropdown Liserobjects Set Tab Height [JHighlight Selected
=] Wizard
a1 Fxol v [“IPap Tab Menu
[E]Folders | E|ModuleLog []Enable Tab 1 [Jshow Close Menu
Ready 3% veyi 2006

Figure 12: A sample Kodigo Project Window

Another intriguing new framework for PowerBuilder development is Brad Wery’s PowerDock framework and related
GUI components. Brad’s website is www.PowerToTheBuilder.com which was mentioned previously. His framework
includes a dock-based IDE-style interface, shortcut bars, gradient and theme support, XP-style listbars, modern

dockable tab controls, modern looking button list bars, and toolbar strips, and other controls.

Most of the window controls are not WYSIWYG, however, and to overcome this Brad has created a PB Ul designer.
The designer allows the developer to customize the GUI controls and writes PowerScript that can then be pasted into
the developer’s application to achieve the desired results.

In addition to the examples at the www.PowerToTheBuilder.com site, an example of the look and feel of a
PowerDock-based application can be seen on WerySoft's home page at www.Werysoft.com. The PowerDock
framework uses a .DLL that allows for these modern-looking GUI controls to be deployed in Win32 and .NET Win
Form environments, but does not support .NET Web Forms as of this writing due to use of the Handle() function in
PowerBuilder. Figure 13 shows an example of a PowerDock-based application, the PowerDock Sample Application.

* PowerDock Sample LEX

Ele Window Help
Sulllc et oe v ks
pBox | [Tab Control | (/] Shortcutb. [Toobbarstrip [Buttonistbar [A Statictext| ~ X | [£]
g gm; lm‘:getm;u:dev Osmall
isplay Text Shadow '
& tide Text Shadow ©Medium Mail
@ Display Close Button Otarge
@ tide Close Button Oxtarge
@ Enable Calendar S [“IEnable Calendar
W Disable Calendar Theme
©Blue
Style
— Oolive
LA Osilver
B vista Embossed OClasskc
WY vista Original
B vista Glss Seroll Speed - 10
Bl custom -
Theme I
\
X e fie i eecinivand
B Olve Set Text for Second Item
) sitver
& windows Classic
3f,, Windows 2000
%5 XPListBar
(2] output [E] Errors.
Mouse moved over Paste

Figure 13: The PowerDock Sample Application

Updating your PowerBuilder Application for Today’s World 10

Improving on the Use of MDI

If reading the tea leaves at Microsoft is any clue, the traditional MDI has fallen out of favor in Redmond.
Potential successors to the MDI interface include the Tabbed Document Interface (TDI) and the IDE-Style Interface.
ATDl interface allows multiple documents to be contained within a single window, using tabs to navigate between
them. It is an interface style most commonly associated with web browsers, web applications, text editors and

preference panes.

An IDE-Style interface has a shell window with child windows residing under a parent window, with the exception
of modal windows. Elements of IDE-Style interfaces include dockable and collapsible child windows, panes, a tabbed
document interface for panes and sub-panes, splitters to resize the panes and sub-panes, and mechanisms to

remember the users’ preferences.

An IDE-style interface is distinguished from the Multiple Document Interface (MDI), because all child windows in
an IDE-style interface are enhanced with added functionality not ordinarily available in MDI applications. Because of
this, the IDE-Style interface can be considered a functional superset of MDI. Both Kodigo and PowerDock are prime
examples of the IDE-style interface. Other IDE-style examples include Outlook, Eclipse, Visual Studio .NET,
and PowerBuilder 12 .NET. Figure 14 shows the upcoming PowerBuilder 12 .NET sporting an IDE-Style interface.

1 PowerBuilder .NET | (=1]E5]
Fle Edt [View | Design Project Formst Buld Run Tool Window Help
Lol & 51| Desgner "] Ak 1ON-Y BREXEK EHI-
I/ | Detabase Painter sShit+F7 "
Solution Expld &3 Solution Explorer CtrHHARHL w_hello : Window [Layout] v helo : Window [Script] | w_wpf : Window [Layout] © x |Properties v B Xy
W @ PB Object Browser = Sybase.PowerBuilder.WPF.
= “E"“"‘Wﬁ 9 ObjectBrowser CuleAks) Name:
S @ hel o A
5 om| 3 owu CulAL+O s [F)# Clear
® | & properties window F4 B 1.PBGeneral -
{ 200
@ | % Toobox Crrleakex AnimationTime (. 200
= || comtrontorwidons oodckr :
d Border
el Find Resukts »
q Bingfotop [
Other Windows »
3 Center [}
g | »
oobars enee O
@ Fusacen shitsArsEnter "
Cosesnimaton Nofnin (¥
* R Pending Checkins
= ’ e S 5
O RT & Nevotepdoard ik g
m(Erabled
@ :; MaxBex
W o MemiName ®
@ mh pbexamor.pol (G Powerbuider 12 Code Ext
@ A pbexamsa.pbl (C:\PowerBulder 12 Code Exc Qesn TG A oEE| | e =
@ B pbexamsy.pbl (C:\PowerBulder 12 Code Ex F x:Clasa="y hello” M| gperrimation Nonin @
;e D:m’”“” D: {CetPorierBul e ‘Z(”TEX Ttp://schemas.microsoft.con/ wintx/2006/ xanl/presentation =
- A phexamwL phi (C:\Pomerbulder 12 Code Ex "http://schemas .microsoft . com/ winfx/2006/ xaml” Palstievindon
% A pbexamwZpbl (C:\PowerBuider 12 Code Ex
@) pbexamw3.pbl (C:\PowerBuider 12 Code Ex Polcon rvl)
® (s References
allbmp »
g’j beach.brp . b
) brv.ico y < = K 1> PeWindowstate Normal v
£ coc.brp </poupt : Windovs -
i copb.bmp o/l 5 Resizable
P 2 oo b s | @ Window Windon + RightToLeft [m} -
= ouput
Ready Ln1 Col2 h2

Figure 14: PowerBuilder 12 .NET as an Example of an IDE-Style Interface

Beyond MDI - The Windows Presentation Foundation
Microsoft assures us there is life after MDI, at least for Win32 applications. Microsoft has promised continued
support of MDI in Windows Forms so existing Windows Forms applications will continue to have Microsoft’s support

for the foreseeable future. Programmers can continue to be productive working in a technology they are familiar with.

Microsoft is positioning WPF as complementary to, not a replacement for, Win32 and MFC code. WPF and Windows
Forms can both be used in a composite application since each is capable of hosting user interface elements defined by
the other. The two platforms have different strengths and can be used to complement each other. Windows Forms, for
example, provides backwards compatibility, performance, and many useful LOB elements, while WPF uniquely offers

things such as superior 3D graphics and animation.

The Windows Presentation Foundation (WPF) is a graphical OS subsystem for rendering user interfaces in
windowing applications. Initially released as part of .NET Framework 3.0, it is designed to remove dependencies on
the aging GDI subsystem. WPF is built on DirectX, which provides hardware acceleration and enables modern UX
features like transparency, gradients and transforms. WPF also provides a consistent programming model for building
applications and provides a clear separation between the user interface and the business logic.

Updating your PowerBuilder Application for Today’s World

WPF was created to allow developers to easily build rich applications that previously were difficult or impossible to
build in Windows Forms, and applications that require a range of other technologies which are often hard to integrate.
For example, WPF is suitable for applications that combine 2D & 3D graphics with highly-styled form elements, video,

rich media and interactive visualization across a wide range of platform hardware.

WPF is Microsoft’s UX road to the future. As a component of the Microsoft .NET Framework 3.5, the classes that
support WPF are included in the NET System Windows namespace and can be utilized by any .NET language. All
elements of WPF may be coded in a .NET language (C#, VB.NET). Whatever parts of this functionality it uses, the basic

structure of every WPF application is much the same.

WPF applications can provide a traditional dialog-driven interface or a navigational interface. A dialog-driven
interface consists of the common UX elements that every Windows user is familiar with. A navigational interface acts
much like a browser, in that rather than opening a new window for a dialog it loads a new page. Interfaces are thus
implemented as a group of pages, each consisting of a user interface defined in XAML together with logic expressed in

a programming language.

A core aspect of WPF is its declarative markup language, called Extensible Application Markup Language, or
XAML. XAML is a Microsoft-developed standard based on XML. XAMLs specific advantage is that it is a declarative
programming language. In declarative languages, the developer or designer describes the behavior and integration of
components without the use of procedural programming. The XAML code can ultimately be compiled into a managed

assembly, called a .BAML, similar to the way all .NET languages are compiled.

The introduction of XAML allows application designers to contribute to the application development cycle. Using
XAML to develop user interfaces also specifically addresses the separation of model and view (the MVC pattern), which
is considered a good architectural principle. In XAML, elements and attributes map to classes and properties in the

underlying APIs.

A key element of WPF XAML is that a WPF application UX uses panels for layout not sheets like MDI. Each panel can
contain one nested element, including other panels and controls such as buttons and text boxes. Different kinds of
panels provide various layout options. For example, a DockPanel allows its child elements to be positioned along the
edges of the panel, a Grid allows positioning its children precisely on a grid, and a Canvas lets a developer position its
children anywhere within the panel’s boundaries. Figure 15 shows the same Sample PowerBuilder 12 .NET application

window as Figures 3 and 4, and Figure 16 and 17 show the underlying XAML of the WPF window class.

M Resizing Controls on a Window B@@

e < > Picture
T Clos=
Command Button il ﬁ
OYes
Oro Ext Mask s
Single Line Edit []Checkbox .00
Multiline Edit List Box Spin Control

sifj sdifhjsdf Line 1 ~ wo——

Isfkhis fiskhfi line 2 50 S

:mg;i'::" line 3

fisdh line 4 -

line 5 Graph
v
Data Window (Freeform) Data Window (Tabular)
Street: | Customer ID
City:
State: ap: [
Phone: [() =
< >
Resize the Window

Figure 15: A PowerBuilder Example Application Window Ported to WPF and Compiled under PowerBuilder 12 .NET

Updating your PowerBuilder Application for Today’s World 12

<pbwpf:Window xmlns="http://schemas.wicrosoft.com/winfx/2006/xaml/presentation” xmlns:x=
<Canvas Name="PBClientArea'>
<pbwpf:GroupBox Name="gb 1" X=r722" Y=rg3" PBEWidth="434" PBHeight="228" TabOrder

<Canvas>...</Canvas

</phwpf:GroupBox>

<pbupf:EditMNask Nawe="em 1" X="1305" ¥="535" PBWidth="232" PBHeight="87" TabOrde
<phup£:camandﬁu::on Name="cb_1" X="146" Y="100" PBWidth="473" PBHeight="109" Ta

<pbuwpf:StaticText

Name="st_1" 150" ¥Y="234" PBWidth="377" PBHeight="71" Enable

<pbupf:SingleLineEdit Name="sle_1" X="150" Y="330" PBEWidth="434" PBHeight="87" T
<pbupf:EditMNask Name="em 2" X="130S5" ¥="324" PBWidth="246" PBHeight="93" TabOrde
<pbwpf:MultilLineEdit Name="mle_1" X="153" Y="S506" PEWidth="491" PBHeight="295" T
<pbwpf:ListBox Name="lb_ 1" X="722" Y="506" PEWidth="502" PBHeight="295" TabOrder

<pbupf:ListBoxItem Item=

Line 1"></pbupf:ListBoxItem>

<pbupf:LisctBoxItem Item="line 2"></pbupf:ListBoxItem>
<pbupf:ListBoxItem Item="line 3"></pbupf:ListBoxItem>
<pbwpf:ListBoxItem Item="line 4"></pbwpf:ListBoxItem>
<pbupf:ListBoxItem Item="line 5"></pbwpf:ListBoxItem>

</pbwpf:ListBox>
<pbwpf:Datalindow

<pbwpf:Picture Name="p_1" X="1305"

Name="dw_1" X="1167" ¥=7951" PBWidth="491" PBHeight="359" TabO
"74" PBWidch="150" PBHeight="132" PictureNa

<pbwpf:Graph Name="gr_1" X="1892" Y="781" PEWidth="961" PBHeight="647" Enabled="

<pbwpf:HScrollBar
<pbwpf:V3crollBar
<pbwpf:Datalindow
<pbwpf:StaticText
<pbwpf:StaticText
<pbwpf:StaticText
<pbwpf:StaticText

Namwe="hsb 1" X=7225" Y="17" PBWidth="985" PBHeight="52" MinFos
Newe="vsb_1" X=736" Y="17" PBWidth="57" PBHeight='"833" MinPosi
Namwe="dw_freeform” X="33" Y="954" PBWidth="1052" PBHeight="497
Name="st_7" X="153" Y="439" PBWidth="338" PBHeight="55" Enable
Name="st_8" X="1892" Y="740" PBWidth="246" PBHeight="55" Enabl
Name="st_11" X="25" Y="884" PBWidth="630" PBHeight="61" Enable
Neamwe="st_9" X="2120" ¥="1460" PEWidth="729" PBHeight="97" Enab

<pbwpf:CheckBox Name="cbx_1" X="726" ¥="346" PBWidth="424" PBHeight="71" Text="C
<pbwpf:CommandButton Name="ch_exit® X="2568" ¥=%55" PBWidth="246" PBHeight="109"
<pbwpf:CommandButton Name="ch_2" X="2568" Y="196" PBEWidth="246" PBHeight="109" T

</Canvas>
</pbwpf:Vindow>

Figure 16: The Underlying XAML of Figure 15, Displayed In a Color-Coded Text Editor

£ pbupt:Vindow -~
xmlns hrtp://schemas.microsoft.com/winfx/2006/ xaml/ presentation il
® xmins:x http://schemas.microsoft.com/winfx/2006/ xaml
& xmlns:pbupt clr-namespace:Sybase. PowerBuilder . WPF.Controls; assenb ly=Sybase . PoverBuilder. .
& x:Class w_scale
® x
e 132
& PBVidth 2927
& PBHeight 1681
& TitleBar true
& PETitle Resizing Controls on a Window
& BackColor 74481808
& controllMenu true
& MinBox true
& MaxBox true 4
& Resizable true
& ToolbarVisible true
& Toolbarilignment alignatleft
& vid 22
& &3 Canvas
& Nawe PBClientArea
®
®
“
-3 pbupf:MultiLineEdit
2 pbwpf:ListBox w
=3 pbupf:DataVindow
& Name dw 1
e x 1187
e 851
& PBWidth 491
& PEHeight 359
& Taborder 70
& Dpataobject d_cust_id
& Borderstyle styleraised
& PBUSCrollBar true
& Livescroll true
®- - pbupf:Picture v
Error List |
Description File Line Column
Saved |

Figure 17: The Underlying XAML of Figure 15, Displayed In Microsoft XML Notepad

Updating your PowerBuilder Application for Today’s World

NEXT STEPS FOR POWERBUILDER DEVELOPERS

There are many forks in the proverbial road, and more coming up with PowerBuilder 12. So it is in an organization’s
best interest for PowerBuilder developers be prepared to add value to their organization. Developers should assess the
company’s use of the PowerBuilder application and determine the best steps forward, evaluating applications in light

of current business practices and goals.

There are several different possible outcomes for how earlier development efforts have held up over time. The first
consideration is whether the business has changed, and if so, how. The majority of companies that have considered
various technology alternatives from Silverstream to Java to .NET to Flex have eventually reached the conclusion that
it is usually more cost effective to enhance and modernize existing PowerBuilder applications that work than it is to

start over with a new technology and a new learning curve

The second consideration is to review advances in technology. In addition to the many suggestions to update a
PowerBuilder application presented here, there are other less obvious opportunities for application modernization,
such as exploiting Web Services or developing a service-based architecture, moving processes or functions away from
the client to an application server, creating .NET Smart Client applications to handle deployment headaches or moving
parts of the application to the web.

Developers need to be able to understand the tradeoffs between PowerBuilder 12 .NET WPF applications and
PowerBuilder 12 Classic, including .NET Win Forms and Web Forms applications. Once PowerBuilder Classic .PBLs have
been converted to WPF there’s no going back. (Of course, every developer will save a copy of their source code, and
should the need ever arise to revitalize that Win32 application, it will be ready and waiting.) As mentioned earlier,
interfaces like MDI are not supported, and it’s not likely that a better metaphor than the tab metaphor that replaces

MDI sheets in a .NET Web Forms application will emerge.

Developers need to understand WPF. Microsoft has clearly stated that this is the strategic direction of its user
interface efforts, and separating WPF from the Windows OS and instead putting it in .NET 3.5 allows for the code to
run on other platforms from smart phones to multi-touch surfaces. Developers also need to understand the role of

XAML, XAML templates, which are similar to cascading style sheets, and BAML, the compiled managed code assembly.

CONCLUSION

Many techniques explored in this article are simple, low cost, and low risk. The migration to newer versions of
PowerBuilder is required to take advantage of modern OS support, current database drivers, and to take advantage of
the features discussed herein. Along the way, developers can do many simple things to modernize the look and feel of
applications. Here are a few suggestions to help ensure that a developer’s contributions are additive to the value chain

of the organization.

Although it seems that presentation layer interfaces is a very dynamic topic right now, some things never go out of
style. The partitioning of business logic and the separation of function from user interface, the layering of solutions by
using abstraction and inheritance, and the adherence to current standards are all timeless. When developing with an

eye to the future, be sure to stay committed to making your applications the best they can be.

Updating your PowerBuilder Application for Today’s World 14

