

Understanding the Architecture of Appeon
2.8

An Appeon Whitepaper

Appeon® for PowerBuilder®

July 2004

LAST REVISED: July 25, 2004

The information contained in this document represents the current view of Appeon Corporation on the issues
discussed as of the date of publication.

This whitepaper is for informational purposes only. APPEON MAKES NO WARRANTIES, EXPRESS OR
IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Appeon may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering
subject matter in this document. Except as expressly provided in any written license agreement from Appeon, the
furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other
intellectual property.

Copyright © 2004 Appeon Corporation. All rights reserved.

Appeon and the Appeon logo are trademarks of Appeon Corporation. Sybase, PowerBuilder, and PFC are
trademarks of Sybase Inc. All other company and product names mentioned herein may be trademarks of their
respective owners. ® indicates registration in the United States.

Appeon Corporation Appeon® 2.8 for PowerBuilder®

Table of Contents

1 Introduction ... 2

1.1 What the product can do ... 2
1.2 Components of the product ... 2
1.3 Where the components reside .. 3
1.4 System requirements .. 4

2 Appeon Web Application Architecture ... 6

2.1 Standard technology ... 6
2.2 Browser-based n-tier architecture ... 6
2.3 Open and flexible J2EE/.NET integration .. 8
2.4 Strong Web security .. 9

3 Appeon Web Lifecycle.. 10

3.1 Lifecycle of traditional JSP/ASP applications .. 10
3.2 Lifecycle of Appeon HTML applications .. 11
3.3 Pros and cons of the Appeon “smart” presentation layer .. 11

4 Conclusion... 13

Whitepaper: Understanding the Architecture of Appeon 2.8 1

Appeon Corporation Appeon® 2.8 for PowerBuilder®

1 Introduction
1.1 What the product can do
Appeon for PowerBuilder deploys entire PowerBuilder applications to the Web. PowerBuilder developers can build
n-tier Web applications using only standard PowerBuilder client/server programming. N-tier Web applications can
be generated from existing PowerBuilder application code, automatically. End-users are presented with the familiar
rich user interface that keeps them highly productive.

From the native source code of PowerBuilder applications, Appeon for PowerBuilder can automatically generate
bona fide n-tier Web applications. These Web applications precisely replicate the client/server user interface with
HTML running in standard Microsoft Web browsers. The application business logic including DataWindows,
NVOs, and Embedded SQL is deployed to a Java-based back-end. The back-end can be readily integrated with
other J2EE, .NET, or Web Services-based Web applications. The standard n-tier Web architecture of Appeon for
PowerBuilder offers the ultimate in scalability, availability, reliability, flexibility and security.

With Appeon for PowerBuilder, PowerBuilder enterprises can add a revolutionary new Web deployment option to
PowerBuilder. Developers build Appeon for PowerBuilder projects, taking advantage of most commonly-used
PowerBuilder features including the PFC framework. Then these projects can be deployed to the Web and
client/server, at the click of a button. Whether building new Web applications or Webifying existing PowerBuilder
applications, Appeon for PowerBuilder provides the fastest, most economical and lowest risk path to the Web.

1.2 Components of the product
Appeon for PowerBuilder consists of three major components or parts: Appeon Developer, Appeon Server and
Appeon Server Web Component.

• Appeon Developer is a plug-in to the PowerBuilder IDE installed to the developer’s PC. It provides a set
of tools that enable the entire PB-to-Web conversion process to take place within the PowerBuilder IDE.
These tools are accessed via a toolbar in the PowerBuilder IDE, which automatically loads each time
PowerBuilder is started.

• Appeon Server is a set of J2EE CORBA and PowerBuilder CORBA server components that deploy to the

application server. It provides the necessary run-time services for Appeon Web applications. These
services include data connectivity, DataWindows support, n-tier NVO support, transaction management,
PDF printing, and security.

• Appeon Server Web Component is a collection of JavaScript libraries that deploy to the Web server. It

enables a PowerBuilder-style Web graphical user interface within standard Microsoft Web browsers. It is
similar to the PowerBuilder Virtual Machine (PBVM) except that it is implemented in JavaScript so there
is no client-side software to install and it weighs in at an ultra-light 1.2MB.

Whitepaper: Understanding the Architecture of Appeon 2.8 2

Appeon Corporation Appeon® 2.8 for PowerBuilder®

Table 1-1: PowerBuilder Virtual Machine Comparison

 PBVM PKVM (PocketPB) Appeon

Size 6-8MB1 3.5MB 1.2MB

Implementation C DLLs C DLLs JavaScript

Client Installation
Required

Yes Yes No

The popular MDI interface and windows, rich DataWindow functionality, menus/toolbars, and most controls are all
available in the Web application.

1.3 Where the components reside
The Appeon Server and Server Web Component install to the n-tier Web architecture.

Table 1-2: Tiers in the Appeon Web architecture

Tier Purpose Appeon
Component

Third-party
Software

Client Web
Browser

Runs Appeon Web applications. None Standard
Microsoft
Internet
Explorer Web
browser.

Web
Server

Hosts the presentation layer of Appeon Web applications,
responds incoming requests from client PC, and dispatches
requests to the application server.

Appeon Server
Web
Component

Apache, IIS,
Netscape,
iPlanet, or
EAServer.

Application
Server

Hosts the DataWindows and n-tier NVOs of Appeon Web
applications, and provides the necessary run-time services to
the Web application, such as DataWindow retrieval and
update, execution of business logic, security authentication,

Appeon Server EAServer

1 PBVM size depends on the number of database device drivers being used.

Whitepaper: Understanding the Architecture of Appeon 2.8 3

Appeon Corporation Appeon® 2.8 for PowerBuilder®

PDF printing, and provides easy connectivity to Messaging
Queues. Appeon Web application middle-tier can invoke Java
Components, External DLL Functions, and C++ Components.
Furthermore, it supports Web Services for the most flexibility
integrating with J2EE and .NET.

Database
Server

Hosts the database for Web applications, providing the
database connection to the application server.

None Oracle, Sybase,
Microsoft, or
IBM.

The Developer PC will ultimately deploy your PowerBuilder application to the n-tier architecture outlined in Table
1-2.

Table 1-3: Developer PC Configuration

Tier Purpose Appeon
Component

Third-party
Software

Developer
PC

Transforms PowerBuilder applications into Appeon
Web applications, automatically.

Appeon Developer PowerBuilder

1.4 System requirements

Client PC(s)
Web Server Application

Server

Developer PC

Data

Database
Server

Client

• IE 6.0 SP1 for Microsoft Windows operating systems

• Optional: Adobe Acrobat Reader 6.0 for viewing PDF printed DataWindows and reports

Web Server

• Apache, Appeon Server, iPlanet, Microsoft IIS, and Netscape for Windows

• Microsoft Windows 2000 SP4 or NT 4.0 SP6a or XP SP1

Application Server

• Sybase EAServer 5.0 (Developer, Advanced or Enterprise Edition)

Whitepaper: Understanding the Architecture of Appeon 2.8 4

Appeon Corporation Appeon® 2.8 for PowerBuilder®

• Sybase PowerBuilder VM 8.0.4 Build 10656 or 9.0.1 Build 7171

• Sun® Java 2 JDK 1.3.1 patch level 06 or JDK 1.4 patch level 01

• Microsoft Windows 2000 SP4 or XP SP1

Databa

ft JDBC driver

nywhere JDBC driver

C driver

• IBM DB2 UDB 8.1 with IBM JDBC driver

Dev

656 or 9.0.1 Build 7171

• Connectivity to Sybase EAServer 5.0 (Developer, Advanced, or Enterprise Edition) or local installation

se

• Microsoft SQL Server 2000 with Microso

• Oracle 8i or 9i with Oracle JDBC driver

• Sybase ASA 7.0.4 or ASA 8.0.2 or 9.0 with Sybase iA

• Sybase ASE 12.x with Sybase jConnect JDB

eloper PC

• Sybase PowerBuilder Enterprise Edition 8.0.4 Build 10

• Microsoft Windows 2000 SP4 or NT SP6a or XP SP1

Whitepaper: Understanding the Architecture of Appeon 2.8 5

Appeon Corporation Appeon® 2.8 for PowerBuilder®

2 Appeon Web Application Architecture
2.1 Standard technology
The Appeon architecture is implemented using industry standard technologies that are open and proven.

Appeon is a zero-client-installation solution. Appeon Web applications do not require the user to download browser
plug-ins, Java Applets, ActiveX controls, Flash or any other client software. The user only downloads and
displays/runs HTML, JavaScript, and XML.

The middle-tier of the Appeon architecture is largely J2EE-based. Only two of the many server components that
make up the Appeon Server run-time framework are not J2EE CORBA server components. Two n-tier PB NVOs
provide Image DataWindow generation functionality and DataWindow data connectivity. The only other non-Java
code running on the middle-tier are any PowerBuilder business logic that the customer deployed to the Appeon
Server as n-tier PB NVOs, if any.

Only standard communication protocols are used. The browser sends requests and data to the Web tier using
HTTP/HTTPS. Within the middle tier, J2EE CORBA components communicate with PowerBuilder CORBA
components using IIOP. The middle tier queries the database tier using SQL and JDBC. An ODBC back-end can
be supported as well using a production-quality JDBC-ODBC bridge driver.

HTML/JS/XML

HTTP

Appeon Web App

Appeon Architecture Comparison

JDBC

Servlet

Java Server
Components

PB NVO

Database

HTML/JS/XML

HTTP

J2EE Web App

JDBC

JSP

Java Sever
Components

Database

HTML/JS/XML

HTTP

.NET Web App

ADO.NET

ASP.NET

Database

Servlet

.NET
Business

Components

2.2 Browser-based n-tier architecture
Appeon Web applications deploy to the standard n-tier Web architecture – the presentation tier, middle tier, and data
tier are logically separated.

• Presentation Tier (Web Browser) – The Web application presentation layer is implemented using only
HTML and JavaScript. The HTML pages define the layout of the Web application windows. The

Whitepaper: Understanding the Architecture of Appeon 2.8 6

Appeon Corporation Appeon® 2.8 for PowerBuilder®

JavaScript files contain the JavaScript equivalent of the PowerScript or UI logic coded in the Window
object, user object, menu object and any other visual objects. The Appeon Web application presentation
layer runs in a standard Internet Explorer Web browser yet offers the same rich GUI as the source
PowerBuilder application.

• Middle Tier (Application Server) – The middle tier, which hosts the business logic, is implemented with

J2EE CORBA components and PowerBuilder CORBA components. The J2EE CORBA components
execute the DataWindows and any Embedded SQL coded in the presentation layer of the PowerBuilder
client/server application. The PowerBuilder CORBA components host the business logic of the
application, if any has been coded as n-tier NVOs. The middle tier deploys to the J2EE-compliant Appeon
Server, leveraging dozens of man-years of investments in DataWindows and other business logic.

• Data Tier (Database) – The database stores the raw data for the application and stored procedures, if any.

The existing database from the PowerBuilder application can be simply re-used without modification so
long as it is an Appeon-certified database.

When the developer clicks the “Deploy” icon of the Appeon Developer toolbar, the PowerBuilder client/server
applications is first partitioned, then translated into Web languages, and lastly deployed to the n-tier architecture.
The deployment process generates a set of Web files comprising HTML, XML and JavaScript. These files are
deployed to the Web server. The DataWindow definitions (syntax) are uploaded to the Appeon Server. If the
application contains n-tier NVOs, the user deploys these objects to Appeon Server using PowerBuilder.

Table 2-1: Output of Web Deployment

Object Type Web Deployment Output Web File Size % Cached
Entire Application Index.htm entry page .HTML: 1-25KB 100%
Window, Visual User
Object

HTML file and JavaScript file .HTML: 1-15KB
.JS: 1-50KB

100%

DataWindow DataWindow syntax uploaded to Appeon
Server, which generates an XML file during
run time.

.XML: 1-50KB 100%

Client-side NVO,
Menu, Application
Object

JavaScript File .JS: 1-50KB 100%

Whitepaper: Understanding the Architecture of Appeon 2.8 7

Appeon Corporation Appeon® 2.8 for PowerBuilder®

2.3 Open and flexible J2EE/.NET integration
Appeon Web applications can be integrated with the following application types:

• .NET applications

• J2EE applications

• PowerBuilder applications

• Traditional Windows-based applications

• Other applications that support SOAP, IIOP, or PBNI protocols.

XML/SOAP

Appeon Server

Web Services on Intranet or Internet

Java & EJB Get/SetFullState
Get/SetChanges

External
Function DLL

MQSeries, TIBCO, Tuxedo,
JMS, And Messaging World

C/C++ DLL
Component/PBNI

PowerBuilder
NVOs

This flexible integration is made possible by Appeon’s open middle tier that supports all leading industry standards
for application integration.

• Appeon’s middle tier supports SOAP and Web services. This relatively new but revolutionary standard
enables application to be integrated with essentially any Web Services-enabled application over the Internet
and without having any knowledge of the internal workings of the application or proprietary adapters.
PowerBuilder NVO Components as well as Java Components and C++ Components on the Appeon Server
can be easily exposed as Web Services such that other applications can readily access the business logic
inside of them. Conversely, Appeon Web applications can also consume Web services.

• Appeon’s middle tier also supports IIOP and CORBA components based on the Java, C/C++, and
PowerBuilder programming languages. As such, Appeon’s middle tier can directly invoke methods of
EJBs (Enterprise Java Beans), COM/ActiveX components, DLLs (Dynamic Linked Libraries), and PB
NVOs (PowerBuilder Non-Visual Objects) that are running on the application server locally.
PowerBuilder NVOs can also easily access External DLL Functions of Windows applications to add in
more integration possibilities.

• Appeon’s middle tier also supports PBNI (PowerBuilder Native Interface), a set of C++ interfaces that
enables C++ classes to harness the power of the PowerBuilder programming language and conversely
enables C++ classes to be integrated into PowerBuilder/Appeon applications.

Whitepaper: Understanding the Architecture of Appeon 2.8 8

Appeon Corporation Appeon® 2.8 for PowerBuilder®

• Appeon’s middle tier also supports passing DataWindow data and state between Server and Client
including GetFullState/SetFullState/GetChanges/SetChanges for Composite, Crosstab, FreeForm, Graph,
Grid, Group, Label, Nested, N-Up, and Tabular presentation styles. This allows Appeon Web applications
to integrate with other visual and non-visual DataWindows external to the Appeon Web application.

• Appeon’s middle tier also supports messaging through all standard messaging products including
MQSeries, Tibco, Tuxedo, and JMS (Java messaging Server).

2.4 Strong Web security
Appeon supports the leading Web security standards and measures to ensure that all data transmissions are safe,
secure, and authentic.

• First and foremost, Appeon Web applications are compatible with all corporate firewalls since Appeon
communicates using HTTP over port 80 and only Web documents pass through the firewall (e.g. .HTML,
.XML, .JS files).

• SSL encryption (HTTPS) up to 128-bits can be applied to all data transmissions to protect even the most
sensitive data transmissions. This level of encryption is so secure that the USA government forbids
exporting Web browser software with 128-bit encryption overseas.

• Digital certificates may be used to ensure that the Appeon Web application and all data transmissions are
authentic. That is, the application and data transmissions are in fact from the specified party/server, and
that the application and data transmissions have not been altered or corrupted in any way.

Appeon conforms to the strict Web browser security sandbox to ensure that the client computer system security
cannot be compromised.

• The Appeon client-side utilizes only non-invasive Web technologies that cannot bypass the Web browser
security sandbox.

• It is implemented using only HTML, JavaScript, and XML. There are no Java Applets, ActiveX controls,
Flash, browser plug-ins, or other client software required other than the standard Microsoft Web browser.

• Thus Appeon Web applications cannot access the user hard drive, Windows registry, operating system, or
anything outside of the Web browser. There is virtually no higher level of client security available for the
Web.

Appeon’s built-in multilevel application security ensures that the system cannot be accessed by unauthorized users,
even when deployed to many different users over public networks (Internet).

• Most existing PowerBuilder application security measures are automatically replicated in the Appeon Web
application. This includes features such as specifying privileges for accessing particular menus, windows,
functionalities within windows, and even DataWindow data (columns).

• Appeon adds a second layer of application-level security on top of the existing PowerBuilder application
security. Application level security will authenticate users based on logon credentials (e.g.
username/password and IP address) before allowing the user to logon to the application. The user access
can be managed using an LDAP server or Appeon’s on built-in system.

• Session timeouts can be easily applied to all Appeon Web applications by simply configuring a setting in
the AEM (Appeon Enterprise Manager). This feature helps safeguard the application from unauthorized
access when authorized users have stepped away momentarily or forgot to logout from the system.

Whitepaper: Understanding the Architecture of Appeon 2.8 9

Appeon Corporation Appeon® 2.8 for PowerBuilder®

3 Appeon Web Lifecycle
3.1 Lifecycle of traditional JSP/ASP applications
The workflow of ASP/JSP applications is bound to the page metaphor, where the smallest unit of communication is
a page. In other words, it is not possible for the client to just obtain one piece of data or execute one function
independent of the ASP/JSP page. Any new information or processing must be performed by executing the
ASP/JSP page on the server, generating an entirely new Web page that the user must download. Generally
speaking, the majority of the data and processes of these ASP/JSP pages is redundant. In this respect, typical
JSP/ASP Web applications are a step backward from the client/server world.

We can take a simple example of a master-detail DataWindow to illustrate the page metaphor. In this example, we
will first load the DataWindow and retrieve data. Then, we will select a new master record (row in the master
DataWindow) to obtain its details (displayed in the detail DataWindow).

To load the DataWindow initially, the lifecycle of the request would be as follow:

• The Web browser sends an HTTP request to the server for a JSP page that has master-detail DataWindows.

• The Servlet engine will execute the server-side Java code contained in the JSP page and retrieve data from
the database for the master and detail DataWindows.

• The JSP page will be dynamically generated into an HTML page by the Servlet engine.

• The Web browser will download the HTML page from the server.

• The Web browser will render the HTML page, processing the document’s markup language.

To load the details of a new master record, the lifecycle of the request would be as follows:

• The Web browser sends an HTTP request to the server for the same JSP page that has the master-detail
DataWindows. The HTTP request contains a parameter - the ID for the new master record that has been
selected.

• The Servlet engine will re-execute the server-side Java code contained in the JSP page and re-retrieve data
from the database for the master and detail DataWindows. The execution of a good portion of this logic
will be redundant but necessary to construct a new Web page and the data retrieval of the master
DataWindow is redundant.

• The JSP page will be dynamically generated into an HTML page by the Servlet engine. The majority of
the Web page has not changed except for the data of the detail DataWindow. Thus, all generation of
HTML is redundant.

• The Web browser will re-download the HTML page from the server. This download is largely redundant.
The exact amount of redundancy or waste can be measured by subtracting the file size of the data for the
detail DataWindow from the total Web page file size.

• The Web browser will re-render the HTML page, re-processing the document’s markup language. This
results in the flash that is observed when users click on one master record and another.

It is possible to reduce the amount of redundancy by chopping up a single page into many small pages using frames.
Essentially, you would put the master DataWindow into one page and the detail DataWindow into another page.
Then you would create a third page to load the master DataWindow into one frame and the detail DataWindow into
another frame. However, chopping up a page as described makes the application more difficult to develop and
especially difficult to manage. That is, the project cycle and risk will increase. Furthermore, it is not feasible to
chop up a Web page into infinite number of pieces. As such, there are limits on how much redundancy can be
avoided using this method.

Whitepaper: Understanding the Architecture of Appeon 2.8 10

Appeon Corporation Appeon® 2.8 for PowerBuilder®

3.2 Lifecycle of Appeon HTML applications
The workflow of Appeon Web applications is based on the client/server metaphor, where the unit of communication is as
granular as a function call or piece of data. Appeon Web applications are composed of a static set of HTML and JavaScript files
that essentially become the Web client. The Web client will then execute logic at the client-side. If a piece of data is needed or
some function on the server must be executed, the Appeon Web application will request that from the server through an HTTP-
based RPC (remote procedure call) that returns results in XML. This is a very similar to Web services except that it is used for
client-to-server communication instead of server-to-server communication. Since the Web client can be fully cached at the
client-side (in the Temporary Internet Files folder), eventually, the only traffic between the client and the server is data and
function calls.

We will reuse our simple example of a master-detail DataWindow to illustrate the Appeon lifecycle. In this
example, we will first load the DataWindow and retrieve data. Then, we will select a new master record (row in the
master DataWindow) to obtain its details (displayed in the detail DataWindow).

To load the DataWindow initially, the lifecycle of the request would be as follow:

• The Web browser sends an HTTP request to the server for an HTML page and a JavaScript file that
corresponds to a PowerBuilder application window containing master-detail DataWindows.

• If the HTML page and JavaScript file do not exist in the Web browser cache (Temporary Internet Files
folder), the Web browser will download them from the server. Otherwise, it will skip the download and
obtain the files directly from the Web browser cache.

• The Web browser will render the HTML page and execute the logic of the JavaScript file.

• The Web browser will send an HTTP request (actually HTTP-based RPC) to the server to retrieve data
from the database for the master and detail DataWindows.

• The server will generate two XML files containing the data for the two DataWindows.

• The Web browser will download the XML files from the server.

• The Web browser will parse the XML files and bind the data to the master and detail DataWindow controls
rendered in the HTML page.

To load the details of a new master record, the lifecycle of the request would be as follows:

• The Web browser will send an HTTP request (actually HTTP-based RPC) to the server to retrieve data
from the database for the detail DataWindow only. The RPC contains a parameter - the ID for the new
master record that has been selected.

• The server will generate one XML files containing the data for the detail DataWindow only.

• The Web browser will download the XML file from the server.

• The Web browser will parse the XML file and bind the data to the detail DataWindow control already
rendered in the HTML page.

Appeon distributes out the presentation layer processing to the Web browser whereas JSP/ASP applications require
all processing to be done at the server. With Appeon, the server executes only business logic and data access logic,
providing even greater partitioning of the application’s logical tiers across the n-tier architecture. The processing
power of the client is harnessed, reducing the server load. But most importantly, by having the presentation layer
processed at the Web browser, the Web client becomes “smart” in that it can work at the granular level of data and function calls.
HTML clients that are “dumb” do not know any better except to ask for another page that carries a significant cost.

3.3 Pros and cons of the Appeon “smart” presentation layer
Appeon’s “smart” presentation layer has a number of benefits over the typical “dumb” ASP/JSP presentation layer:

• Bandwidth saved. Appeon reduces bandwidth consumption significantly. Virtually 100% of the files
downloaded can be cached at the client-side except for data result sets. Furthermore, since Appeon does
not generate any redundant content, downloads are only for what is absolutely necessary. This saves

Whitepaper: Understanding the Architecture of Appeon 2.8 11

Appeon Corporation Appeon® 2.8 for PowerBuilder®

bandwidth. But more importantly, enables Appeon to deliver a very rich user experience without
burdening bandwidth.

• Server scalability improved. Appeon boosts server scalability in two ways. First and foremost, Appeon
harnesses the computing power of the client-side. As such, presentation layer processing can be moved
from the server-side to the client. Second, the server is not burdened with generating redundant pages,
which implies redundant execution of code on the server. As such, Appeon is arguably more scalable than
even ASP and JSP Web applications.

• Database scalability improved. The database is the most critical tier in any application architecture in
terms of scalability and performance. Appeon eliminates all redundant database retrievals, conserving
precious database resources and boosting database scalability. There is no higher level of database
efficiency that can be achieved without using special database caching and performance products, all of
which Appeon is compatible with.

• Better user experience. Appeon delivers the rich PowerBuilder GUI and MDI interface on the Web using
the standard HTML. Page refreshes become a thing of the past. The browser “back” and “forward”
buttons go out in the thrash. The rich user interface of client/server was a huge step forward from dumb
terminals and mainframes. With Appeon, there is no need to go backwards in order to reap the benefits of
the Web and n-tier architecture.

• Higher developer productivity. There is no need to complicate your application development with frames
and give up the productivity of 4GL RAD. In PowerBuilder, developers can build complex Windows-style
user interfaces using an event-driven programming model and readily integrate them with DataWindows
and data sources. Just recently has VisualStudio.NET and a number of J2EE frameworks popped up that
provide some level of component-based development, which is just one of the many features that makes
PowerBuilder highly productive.

Of course, there is a tradeoff to having such a “smart” client running at the Web browser, client-side runtime
performance. If the client-side is made too “heavy” with a large number of DataWindow controls, for example 25
DataWindows, 11 DropDownDataWindows, and 5 DataStores, it may take some time to open such a PowerBuilder
window on the Web. It is really easy to get carried away with DataWindows when you are coding in PowerBuilder
for the client/server architecture. However, if you compare this to typical JSP Web applications with Sybase Web
DataWindow technology for the Web architecture, you would generally not see one JSP page crammed with 40+
DataWindows in the first place. You would not see thousands of rows of data being displayed in a single page. So
all in all, if some basic discretion is exercised and Web best practices are employed, it is possible to have all the
benefits of a “smart” HTML client and good client-side runtime performance without any compromise.

You can read more about Appeon’s client-side runtime performance and performance tuning in the Appeon product
documentation titled “Appeon Performance Tuning Guide” that ships with the Appeon for PowerBuilder product.

Whitepaper: Understanding the Architecture of Appeon 2.8 12

Appeon Corporation Appeon® 2.8 for PowerBuilder®

4 Conclusion
The Appeon architecture delivers all the benefits of the Web and client/server to standard Microsoft Web browsers,
based on open standards and adopting a true n-tier Web architecture. Microsoft and the J2EE community are
making strides to introduce a richer user interface for standard Web browsers. Microsoft ASP.NET’s new Web
Forms is one example and JSF (JavaServer Faces) is another. However if you compare what Appeon has
accomplished with HTML, JavaScript, XML, and HTTP(S), along with the power of DataWindows on the Web, you
will see Appeon’s rich user interface is generations ahead of everyone else. All your new Web development
projects and PowerBuilder client/server migration projects are built with the unparalleled 4GL productivity of
PowerBuilder. When you are ready to go mobile, your Appeon Web applications can be seamlessly extended to
PocketPC using Pocket PowerBuilder without the expense and risk of an entirely new project.

Whitepaper: Understanding the Architecture of Appeon 2.8 13

Appeon Corporation Appeon® 2.8 for PowerBuilder®

Appeon Corporation
1/F, Shell Industrial Building
12 Lee Chung Street
Chai Wan District, Hong Kong
www.appeon.net

Copyright © 2004 Appeon Corporation. All rights reserved. Unpublished rights reserved under U.S. copyright laws. Appeon
and the Appeon logo are trademarks of Appeon Corporation. All other trademarks are property of their respective owners. ®
indicates registration in the United States.

Whitepaper: Understanding the Architecture of Appeon 2.8 14

	Introduction
	What the product can do
	Components of the product
	Where the components reside
	System requirements

	Appeon Web Application Architecture
	Standard technology
	Browser-based n-tier architecture
	Open and flexible J2EE/.NET integration
	Strong Web security

	Appeon Web Lifecycle
	Lifecycle of traditional JSP/ASP applications
	Lifecycle of Appeon HTML applications
	Pros and cons of the Appeon “smart” presentation layer

	Conclusion

